Table of Contents

Introduction to the Exhibition

About This Guide

Anatomist’s Study:
Skeletal System
- Talking Points 4
- Activity: Egg Carton Spinal Cord 5

Breath:
Respiratory System
- Talking Points 6
- Activity: Plastic Bottle Lung 7

Hunger:
Digestive System
- Talking Points 8
- Activity: Bread Digestion 9

Rhythm:
Circulatory System
- Talking Points 10
- Activity: What's In Your Blood? 11

Move:
Muscular System
- Talking Points 12
- Activity: Which Muscle? 13

Think:
Nervous System
- Talking Points 14
- Activity: Memory Quiz 15

What Becomes of Us:
Death
- Talking Points 16
- Activity: Living, Not Living, or Dead 17

Love:
Reproductive System
- Talking Points 18
- Activity: What is Love? 19

Fetal Development:
- Activity: Fruit Development 20

Repairs:
Medicine and Body Repairs
- Activity: Surgeons 23
INTRODUCTION TO THE EXHIBITION

Since humans first evolved, we’ve been striving to understand what we’re made of, why we’re here, and where we’re headed. As we age, the specifics of these questions may change, but fundamentally, they stay the same. We all want to know how we work, how blood circulates through our bodies, and how our brain tells our mouths to talk. We want to know why we experience love and fear, and we also want to know why we do some of the things we do as a species. REAL BODIES challenges and deepens our understanding of these questions by exploring what defines humans both physically and emotionally.

ABOUT THIS GUIDE

This guide is designed to help educators learn about REAL BODIES and find personal connections to the content so that they can have meaningful and impactful interactions with guests. The guide explores the 10 main exhibits in REAL BODIES. Each of the 10 exhibits is explored in three ways.

1. Talking Points and Fun Facts
 - Interesting facts about the exhibit to help educators find connections to the content. The goal is for educators to use some of these talking points to engage with guests.

2. Activities with Guests
 - Each section of the exhibit has an activity to do with guests to enhance their experience.

3. Personal Exploration
 - A series of reflective questions to challenge educators to find a personal connection to the content. The goal is for educators to have a personal story or connection to the exhibition so that they are eager to talk with guests about the content.
TABLE OF CONTENTS

1. The Ear: Sound and Balance
 - Parts of the Ear
 - Functions of the Ear

2. The Skeleton: Structure and Function
 - Bones and Joints
 - Bone Density and Marrow

3. The Muscles: Power and Movement
 - Muscle Groups
 - Muscular Anatomy

4. The Nervous System: Communication
 - Brain and Spinal Cord
 - Reflexes and Innervation

5. The Skin: Protection and Sensory
 - Skin Layers and Functions
 - Hair and Nails

6. The Heart and Vascular System: Circulation
 - Heart Anatomy
 - Blood Vessels and Circulation

7. The Digestive System: Nutrition
 - Oral and Esophageal Phases
 - Stomach and Small Intestine

8. The Respiratory System: Breathing
 - Lungs and Airways
 - Gas Exchange in the Lungs

9. The Urinary System: Elimination
 - Kidneys and Urinary Bladder
 - Renal Physiology

10. The Reproductive System: Fertility
 - Male and Female Reproduction
 - Sexual Anatomy and Fertility

11. The Endocrine System: Hormones
 - Hormone Production and Regulation
 - Endocrine Glands and Functions

12. The Immune System: Defense
 - Immune Response and Inflammation
 - Antibodies and Immune Cells

(Continued on page 5)
PERSONAL EXPLORATION

〇 What bones in your body have you broken? How did it happen? How did it heal?

〇 Why do materials decompose at different rates?

〇 What can we do to speed up and slow down the rate of decomposition?

〇 Are there parts of our skeleton that decompose faster than others?

ACTIVITY:

Egg Carton Spinal Cord.

Guests have the opportunity to make spinal cords out of egg cartons.

MATERIALS

Egg cartons, craft foam, and large pipe cleaners.

DESCRIPTION

- Cut up several egg cartons. Cut out each place where the egg goes. Cut circles from the craft foam. You should cut the same number as the pieces of egg carton, and they should be about the same size.

- Put the cut-up egg cartons, pipe cleaner, and foam circles on a table near the Anatomist’s Study section of the exhibit.

- When guests come over, have them look at the skeleton, and challenge them to create a spinal cord using the materials in front of them.

- Assist guests with making the spinal cords by poking holes through the egg carton sections and the foam circles then threading them with the pipe cleaners.

- Talk with guests about how a human spinal cord has 33 vertebrae and how the alternating vertebrae and vertebral discs allow the spine to bend. The egg carton sections represent the vertebrae, and the foam represent the vertebral discs. The pipe cleaner represents the spinal cord.

- Discuss with guests the similarities and differences of the spinal cords they made and the ones they see in the exhibition.
TALKING POINTS

- The lungs are the only human organ that will float on water because of the amount of air trapped in the lungs’ air sacs. The word “lung” originates from 13th century Indo-European language; it means “light” which refers to the weight of the organ when considering its size.

- The surface area of the lungs is roughly the same size as a tennis court, and the capillaries in the lungs, if placed end to end, would extend 1600 kilometers (approximately 1000 miles). Ask guests to look at the lungs and to estimate how much surface area it would cover before telling them this fun fact.

- We lose half a liter of water a day through breathing. This is the water vapor we see when we breathe onto glass. The other three main ways we lose water are through urination, perspiration, and bowel movements.

- The longest anyone has held their breath was a German free diver who held his breath for 22 minutes and 22 seconds. The average person can hold his or her breath for about 2 minutes. How long can you hold your breath?

- Yawning is a result of your body not taking in enough oxygen from the air which causes a shortage of oxygen in your body. The brain senses this shortage of oxygen and sends a message that causes you to take a deep, long breath.

- Your left lung is smaller than your right to leave room for your heart.

(Continued on page 7)
ACTIVITY:

Plastic Bottle Lung.
Have guests make models of lungs to see the interaction of the lungs and the diaphragm.

MATERIALS
Plastic bottles, scissors, and red and blue balloons.

DESCRIPTION
- Set up a station near the Breathe section of the exhibit, and ask guests to describe how our lungs work. Have guests look at the lungs in the exhibit, and ask them to describe what they see. Ask them to identify the diaphragm and to describe what the diaphragm does.
- Tell guests that they are going to make model lungs to demonstrate the relationship between the lungs and diaphragm. Have guests cut off the bottom of a plastic bottle and cut a red balloon in half. Tie the opening of the cut balloon, and stretch it over the opening in the bottom of the plastic bottle.
- Place a blue balloon in the neck of the bottle, and stretch the opening over the mouth of the bottle.
- Now you have your lung! The blue balloon is the lung, and the red balloon is the diaphragm. Pull on the tied part of the red balloon, and you will see how air flows in and out of the lungs and diaphragm.
- Discuss with guests how the model lungs are similar and different than real lungs.

PERSONAL EXPLORATION
- Have you ever had the wind knocked out of you? What was that experience like?
- What is the relationship between our breathing rate and our emotional state? Do you remember a time when you were breathing hardest?
- What’s the connection between breathing rate and concentration? How do you slow down your breathing?
- What activities do you do to help control your breathing rate? When and why do you do them?
HUNGER: DIGESTIVE SYSTEM

TALKING POINTS

- The gut-brain axis is the close bond that exists between the digestive system and your brain. Emotions (including stress) and brain disorders affect how your body digests food.

- The small intestine is about 22-23 feet long while the large intestine is only about five feet long.

- Ever wonder why it smells bad when you pass gas? It is because the gas is produced by fermented bacteria and mixed with air.

- Stomach growling is called borborygmus and happens all the time, but it is louder when your stomach is empty because there is no food to muffle it.

- To protect your teeth from the acid in your stomach that will come up, the amount of saliva you produce increases when you vomit.

- Hiccups can be caused by a change in temperature that happens suddenly. The longest attack of constant hiccups lasted 68 years.

(Continued on page 9)
PERSONAL EXPLORATION

- Have you ever had the hiccups? What brought them on? What are your tricks to get rid of them?
- What makes you pass gas? What’s your most embarrassing gas story?
- What are some strategies you use when you’re hungry but can’t eat?
- How does eating affect your mood? Do you eat certain foods when you’re happy or depressed? Do certain foods make you happy or depressed?

ACTIVITY:

Bread Digestion.
Demonstrate the digestive system by breaking down bread in a plastic bag.

MATERIALS
Plastic Ziploc bags, bread, and water.

DESCRIPTION
- While in the Hunger section of the exhibition, set up a demonstration station, and ask guests how humans break down food and absorb its nutrients.
- Tell guests that they are going to model the digestive system. Give each guest a piece of bread, and have them rip it into pieces. Ask what part of the digestive process they are modeling. Answer: teeth breaking food into smaller pieces.
- Pass out plastic bags, have guests put bread into the bag, and add a small amount of water into the bag. Ask what part of the digestive process they are modeling. Answer: food being chemically broken down in the stomach by acids.
- Have guests smash the bread in the bag using their fingers. Ask what part of the digestive process they are modeling. Answer: food being physically broken down by the stomach.
- Slightly open the bag, and drain out as much water as you can. Ask what part of the digestive process they are modeling. Answer: water and nutrients are absorbed by the large intestine.
- Dump out the remaining bread into a trashcan. Ask what part of the digestive process they are modeling. Answer: waste being stored in the rectum until it is released.
- Debrief the activity with guests, and ask them if there are any other steps in the digestive process. If so, what are some ideas for how they could model them?
TALKING POINTS

- Ask guests how long would it be if they were to lay out all the arteries and capillaries that are in one average adult. The answer: enough to go around the earth 2.5 times, about 60,000 miles!

- Bone marrow is constantly making new red blood cells because red blood cells only live for about 120 days. Red blood cells lack a nucleus to allow them more space to carry oxygen throughout the body, but without a nucleus, they can’t divide. Therefore, the bone marrow constantly needs to create new red blood cells.

- It takes blood about 20 seconds to travel through your body.

- Laughing helps strengthen your heart! When you laugh, the lining of your blood vessels relaxes and expands, sometimes sending 20 percent more blood flowing through your body.

- Scientists have found evidence of heart disease in 3000-year-old mummies, so we know heart disease is nothing new!
ACTIVITY:

What’s in your blood?
Have guests make fake blood to learn about what is in our blood and what the roles are of the different parts of blood.

MATERIALS
Large plastic bin, ping pong balls, red marbles or water beads, red foam cut into small circles (about 2-inch diameter), and water.

DESCRIPTION
- Set up a station near the Rhythm section of the exhibit with all the materials on a table, and ask guests what they know about blood and how it travels through their bodies.
- Discuss how arteries carry oxygenated blood away from the heart and veins carry oxygen-poor blood back towards the heart. Ask guests: other than oxygen, what is in our blood?
- Tell guests that they are going to make “blood” by putting the four main components into the plastic bin: red blood cells, white blood cells, platelets, and plasma.
- Have guests put in the ping pong balls, marbles or water beads, and red foam circles into the bin. Then pour in enough water to cover the marbles. Have guests reach into the bin and feel the “blood.”
- Discuss the roles of the four parts with guests. The ping pong balls are the white blood cells that fight germs and diseases. The marbles are the red blood cells that carry oxygen through the body. The foam pieces are the platelets that stop bleeding by clumping and clotting. The water is plasma that helps the blood flow and move through the body.

PERSONAL EXPLORATION
- Have you ever donated blood? Have you ever had to receive donated blood? When and why?
- What do you do to keep your heart healthy? What food and exercises do you like best?
- Do you ever get a runner’s high or a similar rush from some other type of exercise? How does that feel? Why do you think it feels that way?
- Have you ever gotten your blood sucked by an animal? When and where?
TALKING POINTS

- The strongest muscles in the body, pound for pound, are the muscles that you chew with—the masseters.

- Smooth muscles which can’t be voluntarily controlled are at work all over your body. They are in your digestive track, bladder, and uterus.

- It takes twice as long for a muscle to degenerate than it does to grow. So if you strengthen a muscle for two months then stop exercising, it would take four months for it to go back to its original condition.

- You use around 200 muscles to take one step!

- There are no muscles in our fingers. Even though we move our fingers all the time, they are made up of ligaments, tendons, and bones. They are moved using the forearm muscle.

(Continued on page 13)
ACTIVITY:
Which muscle?
Guests lift a dumbbell and do various exercises to try to use specific muscles.

MATERIALS
Dumbbell or some heavy object and floor or yoga mat.

DESCRIPTION
- Set up a station in the Move section of the exhibit with the dumbbell and floor mat.
- As guests come by, help them identify different muscles on the specimen in the exhibit and challenge them to figure out how to activate that muscle. For example, to activate the bicep, you can have guests do curls with the weight until they feel their bicep burn.
- Give the guest a muscle, point it out on the specimen, and challenge them to do an exercise that activates that muscle. Below are a list of exercises and the muscles they activate for your reference, but feel free to choose any muscles you like.

<table>
<thead>
<tr>
<th>MUSCLE</th>
<th>EXERCISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calves</td>
<td>Standing calf raise (standing on your toes)</td>
</tr>
<tr>
<td>Quadriceps</td>
<td>Lunge, squat</td>
</tr>
<tr>
<td>Hamstring</td>
<td>Lunge, leg curl</td>
</tr>
<tr>
<td>Pectorals</td>
<td>Pushup, bench press</td>
</tr>
<tr>
<td>Deltoids</td>
<td>Overhead press, shoulder fly</td>
</tr>
<tr>
<td>Triceps</td>
<td>Pushup, triceps extension</td>
</tr>
<tr>
<td>Forearms</td>
<td>Wrist curl</td>
</tr>
</tbody>
</table>

- Discuss with guest which exercises used the most muscles and what the advantages and disadvantages are of doing exercises that isolate just one muscle.

PERSONAL EXPLORATION
- What is your favorite exercise? Why?
- What’s your favorite sport, and what muscles are the most important for that sport?
- Where are you strongest or weakest?
- What is strength? What does that term mean to you?
- What are the best ways to represent strength?
- Other than physical, what are some other types of strength?
TALKING POINTS

- The body has billions of nerve cells. There are more nerve cells in the human brain than there are stars in the Milky Way Galaxy.

- A man’s brain has 6.5 times more gray matter than a woman’s, but a woman’s brain has 10 times more white matter than a man’s brain. The grey matter includes regions of the brain involved in muscle control and sensory perception such as seeing, hearing, memory, emotions, speech, decision making, and self-control. White matter carries nerve impulses between neurons.

- The right side of the brain controls the left side of the body, and the left side of the brain controls the right side of body.

- Messages can travel through the nervous system at a speed of 180mph.

- In newborns, the brain is known to grow three times within the span of a year. As we grow older, the brain loses a gram every year.

(Continued on page 15)
ACTIVITY:
Memory Quiz

MATERIALS

DESCRIPTION
- Set up a station in the Think section of the exhibit, and invite a handful of guests to join you. Explain that they will be testing their short-term memories and analyzing the strategies individual guests use to improve their ability to memorize.
- Ask each guest to use the materials provided to create a 10-item quiz that will test other guests’ short-term memory. Suggest a series of items such as playing cards, numbers, words, or simple facts. Make it clear that the quizzes should be challenging yet not so difficult that guests will not be able to score well.
- When the quizzes have been created, invite guests to give their quizzes to two or three other guests and record the results.
- When the testing is complete, interview the guest who received the highest score. Encourage him or her to explain any strategies he or she might have used as memory aids. Ask the other guests to share other possible strategies for short-term memory.
- After the interviews, give the guests a quiz you created, and have them attempt to use the memory strategies discussed.
- Lead a discussion about which memorization techniques were the most effective, why they were effective, whether they might be useful to others, and how will this help them learn.

PERSONAL EXPLORATION
- Why are some memories much clearer than others? What are your earliest memories and clearest memories?
- Have you ever been in an accident or gone through a traumatic event? Why do you think those memories are often so clear?
- What techniques do you use to try to remember things?
- What sensations are your favorites? If you could swim in a pool of anything, what would it be?
- Is there a difference between your brain and your mind?
- What are some strategies to increase your memory?
TALKING POINTS

- Within three days of death, the enzymes from your digestive system begin to digest your body.
- Forensic scientists can tell how long it has been since death by looking at the species of insects on the body.
- The Turritopsis Dohrnii jellyfish is known as the only immortal creature in the world. It lives forever.

- According to the CDC, the top five leading causes of death are:
 1. Heart disease
 2. Cancer
 3. Chronic lower respiratory diseases
 4. Accidents
 5. Stroke

- Fingernails and toenails do not continue to grow after death. The skin dries and contracts around them, making it look as though they have grown.

(Continued on page 17)
ACTIVITY:
Living, not living, or dead.
Guests explore a variety of objects to define what it means to be alive.

MATERIALS
Assorted objects like rocks, seeds, mold, flowers, candles, water, apples, potted plants, dead bugs, etc.

DESCRIPTION
- Set up a station in the What Becomes of Us section of the exhibit, and set out your materials. As guests come over, and ask them what it means to be alive.
- Ask guests to list the characteristics of all living things. Some common answers are that living things need air, that they move, and that they eat.
- Ask guests to describe the difference between dead and not living. For example, what is the difference between a rock and a dead plant.
- Have guests try to organize the materials into living, nonliving, or dead and discuss their results. Ask guests to explain why they put the objects in the groups that they did.
- Tell guest that the official list of characteristics of all living things is:
 - Has cells
 - Grows
 - Can reproduce
 - Responds to the environment
 - Metabolizes
 - Maintains homeostasis
 - Made of organic molecules (proteins, lipids, carbohydrates, and nucleic acids)
- Ask guests to revise their groups (if needed) based on the new information. How were the living things different from the nonliving things?
- Ask guests if all things that can move are alive? Have them defend their opinions by referring to the results of their explorations.

PERSONAL EXPLORATION
- How do you know if something is or was alive?
- What changes in an organism when it’s dead?
- How does your family mourn death or celebrate the life of a relative? How do you want to be celebrated?
TALKING POINTS

- The largest and smallest cells in our body are a part of the reproductive system. Sperm, at five micrometers by three micrometers, is the smallest cell, and an ovum, or egg, is the largest, with a diameter around 120 micrometers.

- Newborn girls are born with about two million eggs. Those are all the eggs they will ever have. Males produce sperm throughout their lives.

- According to the Guinness Book of World Records, the most children any woman has given birth to is 69! However, doctors generally agree that most women can only have a maximum of around 35 babies. That’s still a lot of babies!

- At typical uterus is only about three inches long and two inches wide, but during pregnancy, it often stretches to 20 times this size.

- When the egg leaves the ovaries, unless it’s fertilized, it only lives for 12-24 hours.

(Continued on page 19)
ACTIVITY:

What is love?
Guests define love in three words and find images that match these terms.

PERSONAL EXPLORATION

- Is love a genetic response or an emotional one? Is there a difference?
- When was the first time you fell in love? Why do you think it happened then?
- How do you court a mate? How do you like to be courted? What’s the best pick-up line you’ve heard?

MATERIALS

Flashcards and pictures or magazines (they can be any kind of magazine).

DESCRIPTION

- Set up a station in the Love section of the exhibit with the flashcards and magazines. When guests come by, ask them if they know what love is.
- Ask guests to come up with three terms that best define love to them. The terms can be anything from passion to companionship to family. Anything works, but they need to choose three terms and write them on three flashcards.
- Give the guests three pictures or magazines, and ask them to find a picture that best matches that term. For example, if they choose passion, they might choose a picture of a couple kissing.
- Shuffle the flashcards on the table, and ask another guest to come over and match the terms with the images.
- Discuss the results, and ask why people have a different understanding of what love is. Repeat this process with guests throughout your shift.
- Towards the end of your shift, create a collage of all the terms and images and give to a guest.
TALKING POINTS

- At around 28 weeks in the womb, babies develop their sense of smell. They can smell the same things their mothers are smelling.
- Babies open their eyes at around 36 weeks in the womb.
- Babies are born without kneecaps.
- Pregnant women have 40-50% more blood in their bodies than they do when they are not pregnant.
- Being tall, over 35, and having a family history of twins are the key indicators that you are more likely to have twins.

ACTIVITY:

Fruit development.

Compare fruit sizes with the size of baby’s development.

MATERIALS

A fruit guide chart and as many of these fruits as you can get (or fruits of similar sizes): peppercorn, blueberry, cherry, lemon, apple, sweet potato, eggplant, cauliflower, butternut squash, pineapple, honeydew, and small watermelon.

DESCRIPTION

- Set up a station in the Beginnings section of the exhibit, and lay out all the fruit.
- When guests come over, tell them that these pieces of fruit represent how big a human baby is as it develops in its mother’s womb. Ask guests to put the fruit in order from smallest to largest, and have them guess the weeks of development each fruit represents.
- Go over the chart on the next page, telling guests how many weeks each fruit represents and some of the developmental milestones at that week.

(Continued on page 21)
<table>
<thead>
<tr>
<th>WEEK</th>
<th>FRUIT</th>
<th>DEVELOPMENTAL MILESTONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Peppercorn</td>
<td>The embryo looks like a tadpole; the circulatory system is beginning to form. The heart is about to start beating.</td>
</tr>
<tr>
<td>7</td>
<td>Blueberry</td>
<td>The embryo has doubled in size this week and still has a tail, but the tail will soon fall off.</td>
</tr>
<tr>
<td>9</td>
<td>Cherry</td>
<td>The embryo has started to move and has formed the beginning of all the basic physiology including tiny fingers and toes!</td>
</tr>
<tr>
<td>12</td>
<td>Lime</td>
<td>The baby’s reflexes kick in. The mom can’t feel the baby yet, but the baby can feel it when you poke on the womb. The baby is able to suck.</td>
</tr>
<tr>
<td>15</td>
<td>Apple</td>
<td>The baby’s eyelids are still closed, but she can sense light. When you shine a flashlight on the mother’s stomach, the baby will move in response. This is also when you can determine the baby’s sex with an ultrasound.</td>
</tr>
<tr>
<td>18</td>
<td>Sweet Potato</td>
<td>The baby can move her arms and legs and is starting to develop smell, vision, touch, taste, and hearing.</td>
</tr>
<tr>
<td>23</td>
<td>Eggplant</td>
<td>The baby looks more like she’ll look when she’s born and is able to differentiate between various sounds.</td>
</tr>
<tr>
<td>27</td>
<td>Cauliflower</td>
<td>The final week of the second trimester. The baby is sleeping at regular intervals, and the lungs are continuing to form.</td>
</tr>
<tr>
<td>29</td>
<td>Butternut Squash</td>
<td>The baby’s eyesight is becoming clearer, and she has almost developed enough to be able to survive on her own in the outside world.</td>
</tr>
<tr>
<td>31</td>
<td>Pineapple</td>
<td>The baby can now turn her head.</td>
</tr>
<tr>
<td>33</td>
<td>Honeydew</td>
<td>The baby is growing at nearly half a pound a week in preparation for leaving the womb.</td>
</tr>
<tr>
<td>39</td>
<td>Small Watermelon</td>
<td>Development is complete. The lungs and brain have just become fully developed, and she’s ready for the outside world!</td>
</tr>
</tbody>
</table>
TALKING POINTS

❖ 56% of Americans are organ donors. Organ donations have saved over 33,000 lives, but there are still over 115,000 men, women, and children waiting for transplants.

❖ The first recorded instance of surgery under general anesthesia took place in 1804 by a Japanese doctor, Seishu Hanaoka. Without anesthesia, the miracles of modern surgeries would never have come about.

❖ In 1867, Joseph Lister published “Antiseptic Principle of the Practice of Surgery,” fundamentally changing cleanliness in the medical field by recommending the use of carbonic acid to clean wounds and medical instruments. Death from infectious diseases dropped from 60% to 4%.

❖ In 1928, Sir Alexander Fleming discovers penicillin, and for the first time, people can treat bacterial infections.

(Continued on page 23)
ACTIVITY:

Surgeons.
Guests try to place parts of the body that they’ve seen in the exhibition on a drawing of a human body.

MATERIALS
Flashcards and a blank image of human body similar to this:

<table>
<thead>
<tr>
<th>BODY PART</th>
<th>SYSTEM</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larynx</td>
<td>Respiratory System</td>
<td>Throat</td>
</tr>
<tr>
<td>Teeth</td>
<td>Digestive System</td>
<td>Mouth</td>
</tr>
<tr>
<td>Heart</td>
<td>Circulatory System</td>
<td>Chest</td>
</tr>
<tr>
<td>Phalanx Bone</td>
<td>Skeletal System</td>
<td>Tip of Fingers</td>
</tr>
<tr>
<td>Quadriceps</td>
<td>Muscular System</td>
<td>Thigh</td>
</tr>
<tr>
<td>Epididymis</td>
<td>Reproductive System</td>
<td>Between Testicles and van deferens</td>
</tr>
</tbody>
</table>

As guests come by, ask them about their experience in the exhibition, and ask them if they want to take a quiz. Tell them they are going to pretend that they are going to take a test to be a surgeon. They need to identify where certain body parts are located on humans.

Hand guests one flashcard at a time. First ask them to identify which system the body part is a part of then ask them to place the card near where the body part is on the body.

After the guest has gone through all the cards, flip them over to see how many they got correct then arrange the cards properly on the image of the human body.

PERSONAL EXPLORATION

- What are things you should do to prevent your body from getting sick or injured?
- What are some safe treatments for illnesses?
- How do you know the best approach to your health?

DESCRIPTION

- Print out a large image of a human body, and make flashcards from the first two columns below. One side should list the body part, and the other should list the body system that it comes from.

PERSONAL EXPLORATION:

- What are things you should do to prevent your body from getting sick or injured?
- What are some safe treatments for illnesses?
- How do you know the best approach to your health?